Relationship To The Axiom of Choice
Proofs or constructions using induction and recursion often use the axiom of choice to produce a well-ordered relation that can be treated by transfinite induction. However, if the relation in question is already well-ordered, one can often use transfinite induction without invoking the axiom of choice. For example, many results about Borel sets are proved by transfinite induction on the ordinal rank of the set; these ranks are already well-ordered, so the axiom of choice is not needed to well-order them.
The following construction of the Vitali set shows one way that the axiom of choice can be used in a proof by transfinite induction:
- First, well-order the real numbers (this is where the axiom of choice enters via the well-ordering theorem), giving a sequence, where β is an ordinal with the cardinality of the continuum. Let v0 equal r0. Then let v1 equal rα1, where α1 is least such that rα1 − v0 is not a rational number. Continue; at each step use the least real from the r sequence that does not have a rational difference with any element thus far constructed in the v sequence. Continue until all the reals in the r sequence are exhausted. The final v sequence will enumerate the Vitali set.
The above argument uses the axiom of choice in an essential way at the very beginning, in order to well-order the reals. After that step, the axiom of choice is not used again.
Other uses of the axiom of choice are more subtle. For example, a construction by transfinite recursion frequently will not specify a unique value for Aα+1, given the sequence up to α, but will specify only a condition that Aα+1 must satisfy, and argue that there is at least one set satisfying this condition. If it is not possible to define a unique example of such a set at each stage, then it may be necessary to invoke (some form of) the axiom of choice to select one such at each step. For inductions and recursions of countable length, the weaker axiom of dependent choice is sufficient. Because there are models of Zermelo–Fraenkel set theory of interest to set theorists that satisfy the axiom of dependent choice but not the full axiom of choice, the knowledge that a particular proof only requires dependent choice can be useful.
Read more about this topic: Transfinite Induction
Famous quotes containing the words relationship to the, relationship, axiom and/or choice:
“Whatever may be our just grievances in the southern states, it is fitting that we acknowledge that, considering their poverty and past relationship to the Negro race, they have done remarkably well for the cause of education among us. That the whole South should commit itself to the principle that the colored people have a right to be educated is an immense acquisition to the cause of popular education.”
—Fannie Barrier Williams (18551944)
“Most childhood problems dont result from bad parenting, but are the inevitable result of the growing that parents and children do together. The point isnt to head off these problems or find ways around them, but rather to work through them together and in doing so to develop a relationship of mutual trust to rely on when the next problem comes along.”
—Fred Rogers (20th century)
“The writer who neglects punctuation, or mispunctuates, is liable to be misunderstood.... For the want of merely a comma, it often occurs that an axiom appears a paradox, or that a sarcasm is converted into a sermonoid.”
—Edgar Allan Poe (18091845)
“Excellence or virtue is a settled disposition of the mind that determines our choice of actions and emotions and consists essentially in observing the mean relative to us ... a mean between two vices, that which depends on excess and that which depends on defect.”
—Aristotle (384323 B.C.)