Triclosan - Mechanism of Action

Mechanism of Action

At in-use concentrations, triclosan acts as a biocide, with multiple cytoplasmic and membrane targets. At lower concentrations, however, triclosan appears bacteriostatic and is seen to target bacteria mainly by inhibiting fatty acid synthesis. Triclosan binds to bacterial enoyl-acyl carrier protein reductase enzyme (ENR), which is encoded by the gene FabI. This binding increases the enzyme's affinity for nicotinamide adenine dinucleotide (NAD+). This results in the formation of a stable ternary complex of ENR-NAD+-triclosan, which is unable to participate in fatty acid synthesis. Fatty acids are necessary for reproducing and building cell membranes. Humans do not have an ENR enzyme, and thus are not affected. Some bacterial species can develop low-level resistance to triclosan at its lower bacteriostatic concentrations because of FabI mutations, which results in a decrease of triclosan's effect on ENR-NAD+ binding, as shown in Escherichia coli and Staphylococcus aureus. Another way for these bacteria to gain low-level resistance to triclosan is to overexpress FabI. Some bacteria have innate resistance to triclosan at low, bacteriostatic levels, such as Pseudomonas aeruginosa, which possesses multi-drug efflux pumps that "pump" triclosan out of the cell. Other bacteria, such as some of the Bacillus genus, have alternative FabI genes (FabK) to which triclosan does not bind and hence are less susceptible.

Read more about this topic:  Triclosan

Famous quotes containing the words mechanism of, mechanism and/or action:

    Life is an offensive, directed against the repetitious mechanism of the Universe.
    Alfred North Whitehead (1861–1947)

    I’ve never known a Philadelphian who wasn’t a downright “character;” possibly a defense mechanism resulting from the dullness of their native habitat.
    Anita Loos (1888–1981)

    The highest proof of civility is that the whole public action of the State is directed on securing the greatest good of the greatest number.
    Ralph Waldo Emerson (1803–1882)