Turbofan Configurations
Turbofan engines come in a variety of engine configurations. For a given engine cycle (i.e., same airflow, bypass ratio, fan pressure ratio, overall pressure ratio and HP turbine rotor inlet temperature), the choice of turbofan configuration has little impact upon the design point performance (e.g., net thrust, SFC), as long as overall component performance is maintained. Off-design performance and stability is, however, affected by engine configuration.
As the design overall pressure ratio of an engine cycle increases, it becomes more difficult to throttle the compression system, without encountering an instability known as compressor surge. This occurs when some of the compressor aerofoils stall (like the wings of an aircraft) causing a violent change in the direction of the airflow. However, compressor stall can be avoided, at throttled conditions, by progressively:
1) opening interstage/intercompressor blow-off valves (inefficient)
and/or
2) closing variable stators within the compressor
Most modern American civil turbofans employ a relatively high pressure ratio high pressure (HP) compressor, with many rows of variable stators to control surge margin at part-throttle. In the three-spool RB211/Trent the core compression system is split into two, with the IP compressor, which supercharges the HP compressor, being on a different coaxial shaft and driven by a separate (IP) turbine. As the HP compressor has a modest pressure ratio it can be throttled-back surge-free, without employing variable geometry. However, because a shallow IP compressor working line is inevitable, the IPC has one stage of variable geometry on all variants except the -535, which has none.
Read more about this topic: Turbofan