Turbulence - Kolmogorov's Theory of 1941

Kolmogorov's Theory of 1941

Richardson's notion of turbulence was that a turbulent flow is composed by "eddies" of different sizes. The sizes define a characteristic length scale for the eddies, which are also characterized by velocity scales and time scales (turnover time) dependent on the length scale. The large eddies are unstable and eventually break up originating smaller eddies, and the kinetic energy of the initial large eddy is divided into the smaller eddies that stemmed from it. These smaller eddies undergo the same process, giving rise to even smaller eddies which inherit the energy of their predecessor eddy, and so on. In this way, the energy is passed down from the large scales of the motion to smaller scales until reaching a sufficiently small length scale such that the viscosity of the fluid can effectively dissipate the kinetic energy into internal energy.

In his original theory of 1941, Kolmogorov postulated that for very high Reynolds numbers, the small scale turbulent motions are statistically isotropic (i.e. no preferential spatial direction could be discerned). In general, the large scales of a flow are not isotropic, since they are determined by the particular geometrical features of the boundaries (the size characterizing the large scales will be denoted as L). Kolmogorov's idea was that in the Richardson's energy cascade this geometrical and directional information is lost, while the scale is reduced, so that the statistics of the small scales has a universal character: they are the same for all turbulent flows when the Reynolds number is sufficiently high.

Thus, Kolmogorov introduced a second hypothesis: for very high Reynolds numbers the statistics of small scales are universally and uniquely determined by the viscosity and the rate of energy dissipation . With only these two parameters, the unique length that can be formed by dimensional analysis is

.

This is today known as the Kolmogorov length scale (see Kolmogorov microscales).

A turbulent flow is characterized by a hierarchy of scales through which the energy cascade takes place. Dissipation of kinetic energy takes place at scales of the order of Kolmogorov length, while the input of energy into the cascade comes from the decay of the large scales, of order L. These two scales at the extremes of the cascade can differ by several orders of magnitude at high Reynolds numbers. In between there is a range of scales (each one with its own characteristic length r) that has formed at the expense of the energy of the large ones. These scales are very large compared with the Kolmogorov length, but still very small compared with the large scale of the flow (i.e. ). Since eddies in this range are much larger than the dissipative eddies that exist at Kolmogorov scales, kinetic energy is essentially not dissipated in this range, and it is merely transferred to smaller scales until viscous effects become important as the order of the Kolmogorov scale is approached. Within this range inertial effects are still much larger than viscous effects, and it is possible to assume that viscosity does not play a role in their internal dynamics (for this reason this range is called "inertial range").

Hence, a third hypothesis of Kolmogorov was that at very high Reynolds number the statistics of scales in the range are universally and uniquely determined by the scale r and the rate of energy dissipation .

The way in which the kinetic energy is distributed over the multiplicity of scales is a fundamental characterization of a turbulent flow. For homogeneous turbulence (i.e., statistically invariant under translations of the reference frame) this is usually done by means of the energy spectrum function, where k is the modulus of the wavevector corresponding to some harmonics in a Fourier representation of the flow velocity field u(x):

,

where รป(k) is the Fourier transform of the velocity field. Thus, E(k)dk represents the contribution to the kinetic energy from all the Fourier modes with k < |k| < k + dk, and therefore,

,

where is the mean turbulent kinetic energy of the flow. The wavenumber k corresponding to length scale r is . Therefore, by dimensional analysis, the only possible form for the energy spectrum function according with the third Kolmogorov's hypothesis is

,

where C would be a universal constant. This is one of the most famous results of Kolmogorov 1941 theory, and considerable experimental evidence has accumulated that supports it.

In spite of this success, Kolmogorov theory is at present under revision. This theory implicitly assumes that the turbulence is statistically self-similar at different scales. This essentially means that the statistics are scale-invariant in the inertial range. A usual way of studying turbulent velocity fields is by means of velocity increments:

;

that is, the difference in velocity between points separated by a vector r (since the turbulence is assumed isotropic, the velocity increment depends only on the modulus of r). Velocity increments are useful because they emphasize the effects of scales of the order of the separation r when statistics are computed. The statistical scale-invariance implies that the scaling of velocity increments should occur with a unique scaling exponent, so that when r is scaled by a factor ,

should have the same statistical distribution as

,

with independent of the scale r. From this fact, and other results of Kolmogorov 1941 theory, it follows that the statistical moments of the velocity increments (known as structure functions in turbulence) should scale as

,

where the brackets denote the statistical average, and the would be universal constants.

There is considerable evidence that turbulent flows deviate from this behavior. The scaling exponents deviate from the n/3 value predicted by the theory, becoming a non-linear function of the order n of the structure function. The universality of the constants have also been questioned. For low orders the discrepancy with the Kolmogorov n/3 value is very small, which explain the success of Kolmogorov theory in regards to low order statistical moments. In particular, it can be shown that when the energy spectrum follows a power law

,

with, the second order structure function has also a power law, with the form

.

Since the experimental values obtained for the second order structure function only deviate slightly from the 2/3 value predicted by Kolmogorov theory, the value for p is very near to 5/3 (differences are about 2%). Thus the "Kolmogorov -5/3 spectrum" is generally observed in turbulence. However, for high order structure functions the difference with the Kolmogorov scaling is significant, and the breakdown of the statistical self-similarity is clear. This behavior, and the lack of universality of the constants, are related with the phenomenon of intermittency in turbulence. This is an important area of research in this field, and a major goal of the modern theory of turbulence is to understand what is really universal in the inertial range.

Read more about this topic:  Turbulence

Famous quotes containing the word theory:

    Osteopath—One who argues that all human ills are caused by the pressure of hard bone upon soft tissue. The proof of his theory is to be found in the heads of those who believe it.
    —H.L. (Henry Lewis)