Quantum Mechanics
For more details on this topic, see QED vacuum, QCD vacuum, Vacuum state.In quantum mechanics and quantum field theory, the vacuum is defined as the state (that is, the solution to the equations of the theory) with the lowest possible energy (the ground state of the Hilbert space). In quantum electrodynamics this vacuum is referred to as 'QED vacuum' to separate it from the vacuum of quantum chromodynamics, denoted as QCD vacuum. QED vacuum is a state with no matter particles (hence the name), and also no photons, no gravitons, etc. As described above, this state is impossible to achieve experimentally. (Even if every matter particle could somehow be removed from a volume, it would be impossible to eliminate all the blackbody photons.) Nonetheless, it provides a good model for realizable vacuum, and agrees with a number of experimental observations as described next.
QED vacuum has interesting and complex properties. In QED vacuum, the electric and magnetic fields have zero average values, but their variances are not zero. As a result, QED vacuum contains vacuum fluctuations (virtual particles that hop into and out of existence), and a finite energy called vacuum energy. Vacuum fluctuations are an essential and ubiquitous part of quantum field theory. Some experimentally verified effects of vacuum fluctuations include spontaneous emission, the Casimir effect and the Lamb shift. Coulomb's law and the electric potential in vacuum near an electric charge are modified.
Theoretically, in QCD vacuum multiple vacuum states can coexist. The starting and ending of cosmological inflation is thought to have arisen from transitions between different vacuum states. For theories obtained by quantization of a classical theory, each stationary point of the energy in the configuration space gives rise to a single vacuum. String theory is believed to have a huge number of vacua — the so-called string theory landscape.
Read more about this topic: Vacuum
Famous quotes containing the words quantum and/or mechanics:
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“the moderate Aristotelian city
Of darning and the Eight-Fifteen, where Euclids geometry
And Newtons mechanics would account for our experience,
And the kitchen table exists because I scrub it.”
—W.H. (Wystan Hugh)