Vector Space - Vector Spaces With Additional Structure

Vector Spaces With Additional Structure

From the point of view of linear algebra, vector spaces are completely understood insofar as any vector space is characterized, up to isomorphism, by its dimension. However, vector spaces per se do not offer a framework to deal with the question—crucial to analysis—whether a sequence of functions converges to another function. Likewise, linear algebra is not adapted to deal with infinite series, since the addition operation allows only finitely many terms to be added. Therefore, the needs of functional analysis require considering additional structures. Much the same way the axiomatic treatment of vector spaces reveals their essential algebraic features, studying vector spaces with additional data abstractly turns out to be advantageous, too.

A first example of an additional datum is an order ≤, a token by which vectors can be compared. For example, n-dimensional real space Rn can be ordered by comparing its vectors componentwise. Ordered vector spaces, for example Riesz spaces, are fundamental to Lebesgue integration, which relies on the ability to express a function as a difference of two positive functions

ƒ = ƒ+ − ƒ−,

where ƒ+ denotes the positive part of ƒ and ƒ− the negative part.

Read more about this topic:  Vector Space

Famous quotes containing the words spaces and/or additional:

    In any case, raw aggression is thought to be the peculiar province of men, as nurturing is the peculiar province of women.... The psychologist Erik Erikson discovered that, while little girls playing with blocks generally create pleasant interior spaces and attractive entrances, little boys are inclined to pile up the blocks as high as they can and then watch them fall down: “the contemplation of ruins,” Erikson observes, “is a masculine specialty.”
    Joyce Carol Oates (b. 1938)

    The world will never be long without some good reason to hate the unhappy; their real faults are immediately detected, and if those are not sufficient to sink them into infamy, an additional weight of calumny will be superadded.
    Samuel Johnson (1709–1784)