Introduction
Wave equations are examples of hyperbolic partial differential equations, but there are many variations.
In its simplest form, the wave equation concerns a time variable t, one or more spatial variables x1, x2, …, xn, and a scalar function u = u (x1, x2, …, xn; t), whose values could model the height of a wave. The wave equation for u is
where is the (spatial) Laplacian and where c is a fixed constant.
Solutions of this equation that are initially zero outside some restricted region propagate out from the region at a fixed speed in all spatial directions, as do physical waves from a localized disturbance; the constant c is identified with the propagation speed of the wave. This equation is linear, as the sum of any two solutions is again a solution: in physics this property is called the superposition principle.
The equation alone does not specify a solution; a unique solution is usually obtained by setting a problem with further conditions, such as initial conditions, which prescribe the value and velocity of the wave. Another important class of problems specifies boundary conditions, for which the solutions represent standing waves, or harmonics, analogous to the harmonics of musical instruments.
To model dispersive wave phenomena, those in which the speed of wave propagation varies with the frequency of the wave, the constant c is replaced by the phase velocity:
The elastic wave equation in three dimensions describes the propagation of waves in an isotropic homogeneous elastic medium. Most solid materials are elastic, so this equation describes such phenomena as seismic waves in the Earth and ultrasonic waves used to detect flaws in materials. While linear, this equation has a more complex form than the equations given above, as it must account for both longitudinal and transverse motion:
where:
- and are the so-called Lamé parameters describing the elastic properties of the medium,
- is the density,
- is the source function (driving force),
- and is the displacement vector.
Note that in this equation, both force and displacement are vector quantities. Thus, this equation is sometimes known as the vector wave equation.
Variations of the wave equation are also found in quantum mechanics, plasma physics and general relativity.
Read more about this topic: Wave Equation
Famous quotes containing the word introduction:
“We used chamber-pots a good deal.... My mother ... loved to repeat: When did the queen reign over China? This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.”
—Angela Carter (19401992)
“Do you suppose I could buy back my introduction to you?”
—S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)
“Such is oftenest the young mans introduction to the forest, and the most original part of himself. He goes thither at first as a hunter and fisher, until at last, if he has the seeds of a better life in him, he distinguishes his proper objects, as a poet or naturalist it may be, and leaves the gun and fish-pole behind. The mass of men are still and always young in this respect.”
—Henry David Thoreau (18171862)