Treatment in Modern Quantum Mechanics
Wave–particle duality is deeply embedded into the foundations of quantum mechanics, so well that modern practitioners rarely discuss it as such. In the formalism of the theory, all the information about a particle is encoded in its wave function, a complex-valued function roughly analogous to the amplitude of a wave at each point in space. This function evolves according to a differential equation (generically called the Schrödinger equation), and this equation has solutions that follow the form of the wave equation. Propagation of such waves leads to wave-like phenomena such as interference and diffraction.
The particle-like behavior is most evident due to phenomena associated with measurement in quantum mechanics. Upon measuring the location of the particle, the particle will be forced into a more localized state as given by the uncertainty principle. When viewed through this formalism, the measurement of the wave function will randomly "collapse", or rather "decohere", to a sharply peaked function at some location. The likelihood of detecting the particle at any particular location is equal to the squared amplitude of the wave function there. The measurement will return a well-defined position, (subject to uncertainty), a property traditionally associated with particles. It is important to note that a measurement is only a particular type of interaction where some data is recorded and the measured quantity is forced into a particular eigenstate. The act of measurement is therefore not fundamentally different from any other interaction.
Although this picture is somewhat simplified (to the non-relativistic case), it is adequate to capture the essence of current thinking on the phenomena historically called "wave–particle duality". (See also: Particle in a box, Mathematical formulation of quantum mechanics.)
Following the development of quantum field theory the ambiguity disappeared. Although there is still debate as to whether one should accept the field as "real", the debate over using the term wave or particle is rendered meaningless. The field permits solutions that follow the wave equation, which are referred to as the wave functions. The term particle is used to label the irreducible representations of the Lorentz group that are permitted by the field. An interaction as in a Feynmann diagram is accepted as a calculationally convenient approximation where the outgoing legs are known to be simplifications of the propagation and the internal lines are for some order in an expansion of the field interaction. Since the field is non-local and quantized, the phenomena which previously were thought of as paradoxes are explained.
Read more about this topic: Wave–particle Duality
Famous quotes containing the words treatment in, treatment, modern, quantum and/or mechanics:
“The treatment of African and African American culture in our education was no different from their treatment in Tarzan movies.”
—Ishmael Reed (b. 1938)
“The motion picture made in Hollywood, if it is to create art at all, must do so within such strangling limitations of subject and treatment that it is a blind wonder it ever achieves any distinction beyond the purely mechanical slickness of a glass and chromium bathroom.”
—Raymond Chandler (18881959)
“The medieval university looked backwards; it professed to be a storehouse of old knowledge.... The modern university looks forward, and is a factory of new knowledge.”
—Thomas Henry Huxley (18251895)
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“the moderate Aristotelian city
Of darning and the Eight-Fifteen, where Euclids geometry
And Newtons mechanics would account for our experience,
And the kitchen table exists because I scrub it.”
—W.H. (Wystan Hugh)