White Noise - Statistical Properties

Statistical Properties

The image to the right displays a finite length, discrete time realization of a white noise process generated from a computer.

Being uncorrelated in time does not restrict the values a signal can take. Any distribution of values is possible (although it must have zero DC component). Even a binary signal which can only take on the values 1 or -1 will be white if the sequence is statistically uncorrelated. Noise having a continuous distribution, such as a normal distribution, can of course be white.

It is often incorrectly assumed that Gaussian noise (i.e., noise with a Gaussian amplitude distribution — see normal distribution) is necessarily white noise, yet neither property implies the other. Gaussianity refers to the probability distribution with respect to the value, in this context the probability of the signal reaching an amplitude, while the term 'white' refers to the way the signal power is distributed over time or among frequencies.

We can therefore find Gaussian white noise, but also Poisson, Cauchy, etc. white noises. Thus, the two words "Gaussian" and "white" are often both specified in mathematical models of systems. Gaussian white noise is a good approximation of many real-world situations and generates mathematically tractable models. These models are used so frequently that the term additive white Gaussian noise has a standard abbreviation: AWGN.

White noise is the generalized mean-square derivative of the Wiener process or Brownian motion.

Read more about this topic:  White Noise

Famous quotes containing the word properties:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)