Definition
The Wronskian of two functions f and g is W(f,g) = fg′–gf ′.
More generally, for n real- or complex-valued functions f1, ..., fn, which are n − 1 times differentiable on an interval I, the Wronskian W(f1, ..., fn) as a function on I is defined by
That is, it is the determinant of the matrix constructed by placing the functions in the first row, the first derivative of each function in the second row, and so on through the (n - 1)st derivative, thus forming a square matrix sometimes called a fundamental matrix.
When the functions fi are solutions of a linear differential equation, the Wronskian can be found explicitly using Abel's identity, even if the functions fi are not known explicitly.
Read more about this topic: Wronskian
Famous quotes containing the word definition:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)