X-ray
X-radiation (composed of X-rays) is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3×1016 Hz to 3×1019 Hz) and energies in the range 100 eV to 100 keV. They are shorter in wavelength than UV rays and longer than gamma rays. In many languages, X-radiation is called Röntgen radiation, after Wilhelm Röntgen, who is usually credited as its discoverer, and who had named it X-radiation to signify an unknown type of radiation. Correct spelling of X-ray(s) in the English language includes the variants x-ray(s) and X ray(s).
X-rays with photon energies above 5-10 keV (below 0.2-0.1 nm wavelength), are called hard X-rays, while those with lower energy are called soft X-rays. Due to their penetrating ability hard X-rays are widely used to image the inside of objects e.g. in medical radiography and airport security. As a result, the term X-ray is metonymically used to refer to a radiographic image produced using this method, in addition to the method itself. Since the wavelength of hard X-rays are similar to the size of atoms they are also useful for determining crystal structures by X-ray crystallography. By contrast, soft X-rays are easily absorbed in air and the attenuation length of 600 eV (~2 nm) X-rays in water is less than 1 micrometer.
The distinction between X-rays and gamma rays is somewhat arbitrary. The most frequent method of distinguishing between X- and gamma radiation is the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10−11 m, defined as gamma rays. The electromagnetic radiation emitted by X-ray tubes generally has a longer wavelength than the radiation emitted by radioactive nuclei. Historically, therefore, an alternative means of distinguishing between the two types of radiation has been by their origin: X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus. There is overlap between the wavelength bands of photons emitted by electrons outside the nucleus, and photons emitted by the nucleus. Like all electromagnetic radiation, the properties of X-rays (or gamma rays) depend only on their wavelength and polarization (or, in a polychromatic beam, the distributions of wavelength and polarization).
Read more about X-ray: Properties, Interaction With Matter, Units of Measure and Exposure, Human Exposure, Sources, Detectors, Medical Uses, Adverse Effects, Other Uses, Visibility