William Lawrence Bragg and William Henry Bragg, who were the 1915 Nobel Prize Winners, were the original pioneers in developing X-ray emission spectroscopy. He measured the X-ray wavelengths of many elements to high precision, using high-energy electrons as excitation source. He also painstakingly produced numerous diamond-ruled glass diffraction gratings for his spectrometers.
Intense and wavelength-tunable X-rays are now typically generated with synchrotrons. In a material, the X-rays may suffer an energy loss compared to the incoming beam. This energy loss of the re-emerging beam reflects an internal excitation of the atomic system, an X-ray analogue to the well-known Raman spectroscopy that is widely used in the optical region.
In the X-ray region there is sufficient energy to probe changes in the electronic state (transitions between orbitals; this is in contrast with the optical region, where the energy loss is often due to changes in the state of the rotational or vibrational degrees of freedom). For instance, in the ultra soft X-ray region (below about 1 keV), crystal field excitations give rise to the energy loss.
The photon-in-photon-out process may be thought of as a scattering event. When the x-ray energy corresponds to the binding energy of a core-level electron, this scattering process is resonantly enhanced by many orders of magnitude. This type of X-ray emission spectroscopy is often referred to as resonant inelastic X-ray scattering (RIXS).
Due to the wide separation of orbital energies of the core levels, it is possible to select a certain atom of interest. The small spatial extent of core level orbitals forces the RIXS process to reflect the electronic structure in close vicinity of the chosen atom. Thus RIXS experiments give valuable information about the local electronic structure of complex systems, and theoretical calculations are relatively simple to perform.
Read more about this topic: X-ray Spectroscopy
Famous quotes containing the word emission:
“Approximately 80% of our air pollution stems from hydrocarbons released by vegetation, so lets not go overboard in setting and enforcing tough emission standards from man-made sources.”
—Ronald Reagan (b. 1911)