XANES - Applications

Applications

The great power of NEXAFS derives from its elemental specificity. Because the various elements have different core level energies, NEXAFS permits extraction of the signal from a surface monolayer or even a single buried layer in the presence of a huge background signal. Buried layers are very important in engineering applications, such as magnetic recording media buried beneath a surface lubricant or dopants below an electrode in an integrated circuit. Because NEXAFS can also determine the chemical state of elements which are present in bulk in minute quantities, it has found widespread use in environmental chemistry and geochemistry. The ability of NEXAFS to study buried atoms is due to its integration over all final states including inelastically scattered electrons, as opposed to photoemission and Auger spectroscopy, which study atoms only with a layer or two of the surface.

Much chemical information can be extracted from the XANES region: formal valence (very difficult to experimentally determine in a nondestructive way); coordination environment (e.g., octahedral, tetrahedral coordination) and subtle geometrical distortions of it.

Transitions to bound vacant states just above the Fermi level can be seen. Thus XANES spectra can be used as a probe of the unoccupied band structure of a material.

The near-edge structure is characteristic of an environment and valence state hence one of its more common uses is in fingerprinting: if you have a mixture of sites/compounds in a sample you can fit the measured spectra with a linear combinations of XANES spectra of known species and determine the proportion of each site/compound in the sample. One example of such a use is the determination of the oxidation state of the plutonium in the soil at Rocky Flats.

Read more about this topic:  XANES