YCbCr - Name

Name

YCbCr is sometimes abbreviated to YCC. Y′CbCr is often called YPbPr when used for analog component video, although the term Y′CbCr is commonly used for both systems, with or without the prime.

Y′CbCr is often confused with the YUV color space, and typically the terms YCbCr and YUV are used interchangeably, leading to some confusion; when referring to signals in video or digital form, the term "YUV" mostly means "Y′CbCr".

Y′CbCr signals (prior to scaling and offsets to place the signals into digital form) are called YPbPr, and are created from the corresponding gamma-adjusted RGB (red, green and blue) source using two defined constants KB and KR as follows:

\begin{align}
Y' &= K_R \cdot R' + (1 - K_R - K_B) \cdot G' + K_B \cdot B'\\
P_B &=\frac12 \cdot \frac{B' - Y'}{1 - K_B}\\
P_R &=\frac12 \cdot \frac{R' - Y'}{1 - K_R}
\end{align}

where KB and KR are ordinarily derived from the definition of the corresponding RGB space. (The equivalent matrix manipulation is often referred to as the "color matrix".)

Here, the prime ′ symbols mean gamma correction is being used; thus R′, G′ and B′ nominally range from 0 to 1, with 0 representing the minimum intensity (e.g., for display of the color black) and 1 the maximum (e.g., for display of the color white). The resulting luma (Y) value will then have a nominal range from 0 to 1, and the chroma (PB and PR) values will have a nominal range from -0.5 to +0.5. The reverse conversion process can be readily derived by inverting the above equations.

When representing the signals in digital form, the results are scaled and rounded, and offsets are typically added. For example, the scaling and offset applied to the Y′ component per specification (e.g. MPEG-2) results in the value of 16 for black and the value of 235 for white when using an 8-bit representation. The standard has 8-bit digitized versions of CB and CR scaled to a different range of 16 to 240. Consequently, rescaling by the fraction (235-16)/(240-16) = 219/224 is sometimes required when doing color matrixing or processing in YCbCr space, resulting in quantization distortions when the subsequent processing is not performed using higher bit depths.

The scaling that results in the use of a smaller range of digital values than what might appear to be desirable for representation of the nominal range of the input data allows for some "overshoot" and "undershoot" during processing without necessitating undesirable clipping. This "head-room" and "toe-room" can also be used for extension of the nominal color gamut, as specified by xvYCC.

Since the equations defining YCbCr are formed in a way that rotates the entire nominal RGB color cube and scales it to fit within a (larger) YCbCr color cube, there are some points within the YCbCr color cube that cannot be represented in the corresponding RGB domain (at least not within the nominal RGB range). This causes some difficulty in determining how to correctly interpret and display some YCbCr signals. These out-of-range YCbCr values are used by xvYCC to encode colors outside the BT.709 gamut.

Read more about this topic:  YCbCr

Famous quotes containing the word name:

    What is it? a learned man
    Could give it a clumsy name.
    Let him name it who can,
    The beauty would be the same.
    Alfred Tennyson (1809–1892)

    Name any name and then remember everybody you ever knew who bore than name. Are they all alike. I think so.
    Gertrude Stein (1874–1946)