Z-transform - Properties

Properties

Properties of the z-transform
Time domain Z-domain Proof ROC
Notation ROC:
Linearity \begin{array} {lcl} X(z) = & \\ \sum_{n=-\infty}^{\infty} (a_1x_1(n)+a_2x_2(n))z^{-n}\ & \\ = a_1\sum_{n=-\infty}^{\infty} (x_1(n))z^{-n} + & \\
a_2\sum_{n=-\infty}^{\infty}(x_2(n))z^{-n} & \\ = a_1X_1(z) + a_2X_2(z)\end{array} At least the intersection of ROC1 and ROC2
Time expansion

: integer

\begin{array} {lcl} X_k(z)=\sum_{n=-\infty}^{\infty} x_k(n)z^{-n} = & \\
= \sum_{r=-\infty}^{\infty}x(r)z^{-rk} = & \\
=\sum_{r=-\infty}^{\infty}x(r)(z^{k})^{-r} = & \\
= X(z^{k}) \end{array} R^{1/k}
Time shifting  \begin{array} {lcl} Z\{x\} = & \\
\sum_{n=0}^{\infty} xz^{-n}\& \\
\text{ ,let }j = n - k & \\
= \sum_{j=-k}^{\infty} xz^{-(j+k)}& \\
= \sum_{j=-k}^{\infty} xz^{-j}z^{-k}& \\
= z^{-k}\sum_{j=-k}^{\infty}xz^{-j}& \\
= z^{-k}\sum_{j=0}^{\infty}xz^{-j} & \\
\text{, since }x=0 \text{ if }\beta<0 & \\
= z^{-k}X(z)& \\
\end{array} ROC, except if and if
Scaling in

the z-domain

\begin{array} {lcl} Z \{a^n x\} = & \\
\sum_{n=-\infty}^{\infty} a^{n}x(n)z^{-n}& \\
= \sum_{n=-\infty}^{\infty} x(n)(a^{-1}z)^{-n} & \\
= X(a^{-1}z) & \\
\end{array}
Time reversal \begin{array} {lcl} \mathcal{Z}\{x(-n)\} = & \\
\sum_{n=-\infty}^{\infty} x(-n)z^{-n}\ & \\
= \sum_{m=-\infty}^{\infty} x(m)z^{m}\ & \\
= \sum_{m=-\infty}^{\infty} x(m){(z^{-1})}^{-m}\ & \\
= X(z^{-1}) & \\
\end{array}
Complex conjugation \begin{array} {lcl}Z\{x^*(n)\} = & \\
\sum_{n=-\infty}^{\infty} x^*(n)z^{-n}\ & \\
= \sum_{n=-\infty}^{\infty} ^*\ & \\
= ^* & \\
= X^*(z^*)& \\
\end{array} ROC
Real part ROC
Imaginary part ROC
Differentiation \begin{array} {lcl}Z\{nx(n)\} = & \\
\sum_{n=-\infty}^{\infty} nx(n)z^{-n}\ & \\
= z \sum_{n=-\infty}^{\infty} nx(n)z^{-n-1}\ & \\
= -z \sum_{n=-\infty}^{\infty} x(n)(-nz^{-n-1})\ & \\
= -z \sum_{n=-\infty}^{\infty} x(n)\frac{d}{dz}(z^{-n})\ & \\
= -z \frac{dX(z)}{dz}& \\
\end{array} ROC
Convolution \begin{array} {lcl}\mathcal{Z}\{x_1(n)*x_2(n)\} = & \\ \mathcal{Z} \{\sum_{l=-\infty}^{\infty} x_1(l)x_2(n-l)\}\ & \\ = \sum_{n=-\infty}^{\infty} z^{-n}\ & \\ =\sum_{l=-\infty}^{\infty} x_1(l) \sum_{n=-\infty}^{\infty} x_2(n-l)z^{-n} ]\ & \\ = \ & \\ =X_1(z)X_2(z)& \\
\end{array} At least the intersection of ROC1 and ROC2
Cross-correlation At least the intersection of ROC of and
First difference At least the intersection of ROC of X1(z) and
Accumulation \begin{array} {lcl}\sum_{n=-\infty}^{\infty}\sum_{k=-\infty}^{n} x\cdot z^{-n}\\ =\sum_{n=-\infty}^{\infty}(x+x+\\
x\cdots x)z^{-n}\\ =X(1+z^{-1}+z^{-2}+z^{-3}\cdots )\\ =X\sum_{j=0}^{\infty}z^{-j} \\ =X \frac{1}{1-z^{-1}}\end{array}
Multiplication -
Parseval's relation
  • Initial value theorem
, If causal
  • Final value theorem
, Only if poles of are inside the unit circle

Read more about this topic:  Z-transform

Famous quotes containing the word properties:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)