Electromagnetic Radiation - Biological Effects

Biological Effects

The effects of electromagnetic radiation upon living cells, including those in humans, depends upon the power and the frequency of the radiation. For low-frequency radiation (radio waves to visible light) the best-understood effects are those due to radiation power alone, acting through the effect of simple heating when the radiation is absorbed by the cell. For these thermal effects, the frequency of the radiation is important only as it affects radiation penetration into the organism (for example microwaves penetrate better than infrared). Initially, it was believed that low frequency fields that were too weak to cause significant heating could not possibly have any biological effect.

Despite this opinion among researchers, evidence has accumulated that supports the existence of complex biological effects of weaker non-thermal electromagnetic fields, (including weak ELF magnetic fields, although the latter does not strictly qualify as EM radiation), and modulated RF and microwave fields. Fundamental mechanisms of the interaction between biological material and electromagnetic fields at non-thermal levels are not fully understood. Bioelectromagnetics is the study of these interactions and effects.

The World Health Organization has classified radiofrequency electromagnetic radiation as a possible group 2b carcinogen. This group contains possible carcinogens with weaker evidence, at the same level as coffee and automobile exhaust. For example, there have been a number of epidemiological studies of looking for a relationship between cell phone use and brain cancer development, which have been largely inconclusive, save to demonstrate that the effect, if it exists, cannot be a large one. See the main article referenced above.

At higher frequencies (visible and beyond), the effects of individual photons of the radiation begin to become important, as these now have enough energy individually directly or indirectly to damage biological molecules. All frequences of UV radiation have been classed as Group 1 carcinogens by the World Health Organization. Ultraviolet radiation from sun exposure is the primary cause of skin cancer.

Thus, at UV frequencies and higher (and probably somewhat also in the visible range), electromagnetic radiation does far more damage to biological systems than simple heating predicts. This is most obvious in the "far" (or "extreme") ultraviolet, and also X-ray and gamma radiation, are referred to as ionizing radiation due to the ability of photons of this radiation to produce ions and free radicals in materials (including living tissue). Since such radiation can produce severe damage to life at powers that produce very little heating, it is considered far more dangerous (in terms of damage-produced per unit of energy, or power) than the rest of the electromagnetic spectrum.

Read more about this topic:  Electromagnetic Radiation

Famous quotes containing the words biological and/or effects:

    Much of the ill-tempered railing against women that has characterized the popular writing of the last two years is a half-hearted attempt to find a way back to a more balanced relationship between our biological selves and the world we have built. So women are scolded both for being mothers and for not being mothers, for wanting to eat their cake and have it too, and for not wanting to eat their cake and have it too.
    Margaret Mead (1901–1978)

    If one judges love according to the greatest part of the effects it produces, it would appear to resemble rather hatred than kindness.
    François, Duc De La Rochefoucauld (1613–1680)