Field Extension - Definitions

Definitions

Let L be a field. If K is a subset of the underlying set of L which is closed with respect to the field operations and inverses in L, then K is said to be a subfield of L, and L is said to be an extension field of K. We then say that L /K, read as "L over K", is a field extension.

If L is an extension of F which is in turn an extension of K, then F is said to be an intermediate field (or intermediate extension or subextension) of the field extension L /K.

Given a field extension L /K and a subset S of L, K(S) denotes the smallest subfield of L which contains K and S, a field generated by the adjunction of elements of S to K. If S consists of only one element s, K(s) is a shorthand for K({s}). A field extension of the form L = K(s) is called a simple extension and s is called a primitive element of the extension.

Given a field extension L /K, then L can also be considered as a vector space over K. The elements of L are the "vectors" and the elements of K are the "scalars", with vector addition and scalar multiplication obtained from the corresponding field operations. The dimension of this vector space is called the degree of the extension, and is denoted by .

An extension of degree 1 (that is, one where L is equal to K) is called a trivial extension. Extensions of degree 2 and 3 are called quadratic extensions and cubic extensions, respectively. Depending on whether the degree is finite or infinite the extension is called a finite extension or infinite extension.

Read more about this topic:  Field Extension

Famous quotes containing the word definitions:

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)

    The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babies—if they take the time and make the effort to learn how. It’s that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.
    Pamela Patrick Novotny (20th century)