In number theory, a sphenic number (from Ancient Greek: σφήνα, 'wedge') is a positive integer which is the product of three distinct prime numbers.
Note that this definition is more stringent than simply requiring the integer to have exactly three prime factors; e.g. 60 = 22 × 3 × 5 has exactly 3 prime factors, but is not sphenic.
All sphenic numbers have exactly eight divisors. If we express the sphenic number as, where p, q, and r are distinct primes, then the set of divisors of n will be:
All sphenic numbers are by definition squarefree, because the prime factors must be distinct.
The Möbius function of any sphenic number is −1.
The cyclotomic polynomials, taken over all sphenic numbers n, may contain arbitrarily large coefficients (for n a product of two primes the coefficients are or 0).
The first few sphenic numbers are: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, ... (sequence A007304 in OEIS)
The first case of two consecutive integers which are sphenic numbers is 230 = 2×5×23 and 231 = 3×7×11. The first case of three is 1309 = 7×11×17, 1310 = 2×5×131, and 1311 = 3×19×23. There is no case of more than three, because every fourth consecutive positive integer is divisible by 4 = 2×2 and therefore not squarefree.
As of June 2009 the largest known sphenic number is (243,112,609 − 1) × (242,643,801 − 1) × (237,156,667 − 1), i.e., the product of the three largest known primes.
Famous quotes containing the word number:
“It is always possible to bind together a considerable number of people in love, so long as there are other people left over to receive the manifestations of their aggression.”
—Sigmund Freud (18561939)